Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.24.558921

ABSTRACT

Aims: To explore viral evolution during in vitro neutralisation using next generation sequencing, and to determine whether sera from individuals immunised with two doses of the Pfizer BioNTech vaccine (BNT162b2) are as effective at neutralising the SARSCoV2 variant of concern (VOC) Delta (B 1.617.2) compared to the earlier lineages Beta (B.1.351) and wildtype (lineage A.2.2) virus. Methods: Using a live virus SARSCoV2 neutralisation assay in Vero E6 cells we determined neutralising antibody titres (nAbT) in 14 participants (vaccine naive (n=2) and post second dose of BNT162b2 vaccination (n=12), median age 45 years [IQR 29 to 65], median time after second dose = 21 days [IQR 19 to 28] against three SARSCoV2 strains: wild-type, Beta and Delta. The determination of nAbT was performed by visual inspection of cytopathic effect (CPE) and inhouse quantitative reverse transcriptase real time quantitative polymerase chain reaction (RTqPCR) to confirm SARS-CoV-2 replication. A total of 110 representative samples including inoculum, neutralisation breakpoints at 72 hrs, negative and positive controls underwent genome sequencing using the Respiratory Viral Oligo Panel version 2 (RVOP) (Illumina Inc. (San Diego, United States of America)) viral enrichment and short read sequencing using (Illumina Inc. (San Diego, United States of America)),(Figure 1). Results: There was a significant reduction in nAbT observed against the Delta and Beta VOC compared with wildtype, 4.4 fold (p = >0.0006) and 2.3 fold (p = 0.0140), respectively (Figure 2). Neutralizing antibodies were not detected in one vaccinated immunosuppressed participant nor the vaccine naive participants (n=2). The highest nAbT against the SARS-CoV-2 variants investigated was obtained from a participant who was vaccinated following SARSCoV2 infection 12 months prior (Table S1). Limited consensus level mutations occurred in the SARS-CoV-2 genome of any lineage during in vitro neutralisation, however, consistent minority allele frequency variants (MFV) were detected in the SARS-CoV-2 polypeptide, spike (S) and membrane protein. Discussion: Significant reductions in nAbT post vaccination were identified, with Delta demonstrating a 4.4 fold reduction. The reduction in nAbT for the VOC Beta has been previously documented, however, limited data is available on vaccine evasion for the Delta VOC, the predominant strain currently circulating worldwide at the time. Studies in high incidence countries may not be applicable to low incidence settings such as Australia as nAbT may be significantly higher in vaccine recipients previously infected with SARSCoV2, as seen in our cohort. Monitoring viral evolution is critical to evaluate the impact of novel SARSCoV2 variants on vaccine effectiveness as mutational profiles in the sub-consensus genome could indicate increases in transmissibility, virulence or allow the development of antiviral resistance.


Subject(s)
COVID-19
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1683350.v1

ABSTRACT

The emergence of resistance to antiviral drugs increasingly used to treat SARS-CoV-2 infections has been recognised as a significant threat to COVID-19 control. In addition, some SARS-CoV-2 variants of concern appear to be intrinsically resistant to several classes of these antiviral agents. Therefore, there is a critical need for rapid recognition of clinically relevant polymorphisms in SARS-CoV-2 genomes associated with significant reduction of drug activity in virus neutralisation experiments. Here we present SABRes, a bioinformatic tool, which leverages on expanding public datasets of SARS-CoV-2 genomes and allows detection of drug resistance mutations in consensus genomes as well as in viral subpopulations. We have applied SABRes to detect resistance-conferring mutations in over 25,000 genomes generated over the course of the SARS-CoV-2 pandemic in Australia.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.18.21267628

ABSTRACT

Several Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) neutralising monoclonal antibodies (mAbs) have received emergency use authorisation by regulatory agencies for treatment and prevention of Coronavirus Disease 2019 (COVID-19), including in patients at risk for progression to severe disease. Here we report the persistence of viable SARS-CoV-2 in patients treated with sotrovimab and the rapid development of spike gene mutations that have been shown to confer high level resistance to sotrovimab in vitro. We highlight the need for SARS-CoV-2 genomic surveillance in at risk individuals to inform stewardship of mAbs use and prevent potential treatment failures.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.12.472252

ABSTRACT

In late November 2021, the World Health Organization declared the SARS-CoV-2 lineage B.1.1.529 the fifth variant of concern, Omicron. This variant has acquired 15 mutations in the receptor binding domain of the spike protein, raising concerns that Omicron could evade naturally acquired and vaccine-derived immunity. We utilized an authentic virus, multicycle neutralisation assay to demonstrate that sera collected one, three and six months post-two doses of Pfizer-BioNTech BNT162b2 has a limited ability to neutralise SARS-CoV-2. However, four weeks after a third dose, neutralising antibody titres are boosted. Despite this increase, neutralising antibody titres are reduced four-fold for Omicron compared to lineage A.2.2 SARS-CoV-2.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.14.20153981

ABSTRACT

BackgroundThe detection of SARS-CoV-2 by real-time polymerase chain reaction (PCR) in respiratory samples collected from persons recovered from COVID-19 does not necessarily indicate shedding of infective virions. By contrast, the isolation of SARS-CoV-2 using cell-based culture likely indicates infectivity, but there are limited data on the correlation between SARS-CoV-2 culture and PCR. Here we review our experience using SARS-CoV-2 culture to determine infectivity and safe de-isolation of COVID-19 patients. Methods195 patients with diverse severity of COVID-19 were tested (outpatients [n=178]), inpatients [n=12] and ICU [n=5]). SARS-CoV-2 PCR positive samples were cultured in Vero C1008 cells and inspected daily for cytopathic effect (CPE). SARS-CoV-2-induced CPE was confirmed by PCR of culture supernatant. Where no CPE was documented, PCR was performed on day four to confirm absence of virus replication. Cycle threshold (Ct) values of the day four PCR (Ctculture) and the PCR of the original clinical sample (Ctsample) were compared, and positive cultures were defined as a Ctsample - Ctculture value of [≥]3. FindingsOf 234 samples collected, 228 (97%) were from the upper respiratory tract. SARS-CoV-2 was only successfully isolated from samples with Ctsample values <32, including in 28/181 (15%), 19/42 (45%) and 9/11 samples (82%) collected from outpatients, inpatients and ICU patients, respectively. The mean duration from symptom onset to culture positivity was 4.5 days (range 0-18 days). SARS-CoV-2 was significantly more likely to be isolated from samples collected from inpatients (p<0.001) and ICU patients (p<0.0001) compared with outpatients, and in samples with lower Ctsample values. ConclusionSARS-CoV-2 culture may be used as a surrogate marker for infectivity and inform de-isolation protocols.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.19.048751

ABSTRACT

Community transmission of the new coronavirus SARS-CoV-2 is a major public health concern that remains difficult to assess. We present a genomic survey of SARS-CoV-2 from a during the first 10 weeks of COVID-19 activity in New South Wales, Australia. Transmission events were monitored prospectively during the critical period of implementation of national control measures. SARS-CoV-2 genomes were sequenced from 209 patients diagnosed with COVID-19 infection between January and March 2020. Only a quarter of cases appeared to be locally acquired and genomic-based estimates of local transmission rates were concordant with predictions from a computational agent-based model. This convergent assessment indicates that genome sequencing provides key information to inform public health action and has improved our understanding of the COVID-19 evolution from outbreak to epidemic.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.15.992818

ABSTRACT

The SARS-CoV-2 epidemic has rapidly spread outside China with major outbreaks occurring in Italy, South Korea and Iran. Phylogenetic analyses of whole genome sequencing data identified a distinct SARS-CoV-2 clade linked to travellers returning from Iran to Australia and New Zealand. This study highlights potential viral diversity driving the epidemic in Iran, and underscores the power of rapid genome sequencing and public data sharing to improve the detection and management of emerging infectious diseases.


Subject(s)
Severe Acute Respiratory Syndrome , Communicable Diseases, Emerging
SELECTION OF CITATIONS
SEARCH DETAIL